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The prediction of drug-target interactions aims to identify potential targets for the treatment of new and
rare diseases. The large number of unknown combinations between drugs and targets makes them diffi-
cult to verify with experimental methods. There are computational methods that predict drug-target
interactions; however, these methods are insufficient in integrating multiple types of data and managing
network noise, which affects the accuracy of the prediction. We report a multilayer network representa-
tion learning method for drug-target interaction prediction that can integrate useful information from
different networks, reduce noise in the multilayer network, and learn the feature vectors of drugs and tar-
gets. The feature vectors of the drug and the target are put into the drug-target space to predict the poten-
tial drug-target interactions. This work improves the method of multilayer network representation
learning and prediction accuracy by increasing the parameter regularization constraints.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

With the advancement of medical technology, drug-target
interactions (DTIs) have been discovered. Although the number
of known drug-target interactions have increased, the number of
proteins approved as drug targets is less than 10% of all human
proteins [1]. According to statistics [2], most drugs have only a
few targets, with an average of two to three targets for each drug.
Therefore, for all drug-target pairs, the known drug-target interac-
tions are very limited [3], and new interactions need to be pre-
dicted in order to discover more potential effects of available
drugs. DTIs prediction is an important part of drug reposition that
can reduce the cost and cycle of drug development. The cost and
time required to determine all drug-target interactions using
experimental methods cannot be estimated; therefore, computa-
tional methods are needed to predict drug-target interactions to
narrow the scope, reduce costs, and save experimental time. The
traditional calculation method mainly relies on two strategies
based on molecular docking [4,5] and ligand [6,7]. The molecular
docking method requires three-dimensional structural data of the
predicted target protein, while the ligand method requires a large
number of binding ligands; therefore these two strategies are not
suitable for managing large-scale data. Current computational
methods are based on the assumption that similar drugs may have
the same target and vice versa. These methods are mainly divided
into two categories according to the data used: single-type data
and multi-type data integration.

Among the methods based on single-type data, there was a
recent study [8] that used chemical structure data of drugs in
term frequency and term frequency-inverse document frequency
weighting methods. These methods proposed a Simplified Molec-
ular Input Line Entry Specification (SMILES) kernel based on
cosine similarity to predict drug-target interactions in multiple
data sets by comparing multiple SMILES-based similarity meth-
ods, which were shown to be superior to other methods [8].
The similarity of phenotypic side effects is also used to infer
whether drugs have common targets [9]. Zhu, el al. [10] con-
ducted a groundbreaking study in which they developed a prob-
abilistic model, called the Mixture Aspect Model (MAM), based
on text mining of drug and target co-occurrence, and found hid-
den drug-target interactions. Recently, some articles continue to
study on the basis of probabilistic models [11,12]. These analyses
were based on one type of data, using different methods to pre-
dict drug-target interactions.

With the development of biotechnology, data types are becom-
ing more and more abundant. Compared with a single type of data,
there is information supplemented between multiple types of data,
and the integration of different types of data can be used to mine
for additional hidden information.
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There are studies [13–15] that used the similarity network
fusion (SNF) method [16] to nonlinearly fuse multiple similarity
networks and provide information supplementation for different
networks [17,18]. There are also two-way random walks in hetero-
geneous bipartite networks to infer potential drug-target interac-
tions [19,20]. A study projected multiple types of data into a
common feature space, integrated multiple networks into a single
network, and then used collaborative matrix decomposition to
make predictions [21]. There is also a method based on Laplacian
regularized sparse subspace learning (LRSSL), which integrates a
variety of drug characteristics such as drug chemical structure
information, drug target information, and target labeling features
projected into the common subspace, and assigns Laplace regular-
ization terms to satisfy the smoothness of the subspace [22]. There
are also methods such as a support vector machine (Support Vector
Machine, SVM) and feature selection (Feature Selection, FS) that
establish a predictive drug target interaction model [23].

However these methods have deficiencies in the integration of
data. First, through network fusion, which directly uses the diffu-
sion state as a feature or prediction score, the noise in different
networks can affect results. Second, integrating multiple networks
into one network or projecting into a common subspace may result
in the loss of specific information from the different networks
because the information from multiple data sources is mixed and
cannot be distinguished from one another. These factors affect
the accuracy of predicting drug-target interactions.

TheMulti-layer network representation learning to predict drug
target interactions (MEDTI) model is based on deep neural net-
works [24–27] and integrates multiple layers of similarity net-
works constructed using multiple types of drugs and targets,
learns the drug and target compact feature vectors, respectively,
and then puts the drug and target feature vectors into the drug tar-
get space. The known drug-target interactions are used as super-
vising information and the drug and target vectors proximity in
the drug-target space is used to predict the new drug target inter-
action. The MEDTI not only captures the common topology of mul-
tilayer drug or target similarity networks and the unique network
topology features of each layer of the network, but also uses the
characteristics of deep neural networks to capture deep non-
linear feature transformations. The MEDTI’s innovation is the
application of deep learning ideas to drug-target interaction pre-
diction and improving the original multilayer network representa-
tion learning method. By adding regularization constraints, the
accuracy of prediction is improved. Experiments on the same data
set show that the performance of MEDTI is better than other pre-
diction methods. In addition, the integration of multiple types of
data can significantly improve the prediction accuracy. We also
verified the top eight drug-target pairs in the prediction results
and demonstrated the reliability of the prediction results from dif-
ferent methods. These results show that MEDTI is a useful tool for
integrating multiple types of data to predict unknown DTIs that
may provide new insight into drug reposition and understanding
drug action mechanisms.
2. Materials and methods

2.1. Datasets

The data sets used in this article are all from public databases.
Drug chemical structure information and drug interaction data
were collected from the DrugBank database [28]. Drug-disease
relationship data were extracted from the Comparative Toxicoge-
nomics Database (CTD) [29], and the side-effect data of the drugs
were collected in the SIDER database [30]. Extract target sequence
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information and protein interaction data are from the Human Pro-
tein Reference Database (HPRD) [31], and protein-disease relation-
ship data from the CTD database. The known drug-target
interaction data were extracted from the DrugBank database.
Tables 1 and 2 present the data statistics.

2.2. Construction of the similarity network

By collecting data from multiple public databases, multiple net-
works have been constructed to predict unknown DTIs. Based on
the four types of data of drug chemical structure, drug-disease
association, drug-drug interaction, and drug side effects, four drug
similarity networks are constructed. Three types of protein similar-
ity networks are constructed based on three types of data: protein
sequence, protein-disease association, and protein–protein inter-
action. Enhance the heterogeneity of the similarity network
through multiple types of data, which can provide multi-angle
information to predict DTIs. See the supplementary materials for
the specific steps of similarity network construction.

2.3. Problem description

We used D ¼ di; i ¼ 1; :::;nf g for the drugs node set,
T ¼ tj; j ¼ 1; :::;m

� �
for the proteins node set, AD 2 Rn�n for the

drug similarity matrix, AT 2 Rm�m for the protein similarity matrix,
n for the number of drugs, and m for the number of proteins. The
element values in different similarity matrices represent the simi-
larity between drugs or target proteins based on different mea-
sures, and the values of all elements in each similarity matrix are
in the range of 0;1½ �. The interaction between the drugs D and
the proteins T is represented by the matrix P 2 Rn�m. If there is
an interaction between the drug di and the protein tj, then
Pij = 1; otherwise Pij = 0. The drug and protein similarity matrices
are AD and AT , and the drug target interaction matrix is P. Our goal
was to predict the new (i.e. unknown) drug-target interactions in P.

2.4. The framework of the MEDTI method

The MEDTI method uses a deep neural network to integrate a
multilayer similarity network and denoise each layer of the net-
work. Through multilayer network representation learning, a fea-
ture vector representation of the drug and target was obtained
and then the known drug target interaction was used as supervi-
sion information to predict unknown drug-target interactions. In
addition, this method improved the learning method of multilayer
network representation. Fig. 1 illustrates the MEDTI process
overview.

2.5. Learning compact feature vectors

In order to maintain the common topology of the multilayer
similarity network and the unique characteristics of each layer of
the network, we used the Multimodal Deep Autoencoder (MDA)
[32] method and improved upon it to learn the compact feature
vectors of drugs and targets. Fig. 2 is a flowchart of learning feature
vectors.

First, the restarted randomwalk algorithm (RWR) [33] was used
on the drug and target similarity network AD;ATð Þ to capture the
topology information of the similarity network and obtain the fea-
ture vectors of the drug and target. Compared with the vector rep-
resentation of network nodes obtained by DeepWalk [34],
node2vec [35] and other methods, the RWRmethod required fewer
hyperparameters and had lower computational complexity. The
RWR was calculated as follows:



Table 1
The number of nodes in heterogeneous networks.

Types of node Drug Target Disease Drug side effect

Number of nodes 882 1449 6902 5439

Table 2
The number of edges in heterogeneous networks.

Type of edge Number of edges

Drug-Target 3185
Drug-Drug 173,585
Drug-Disease 369,072
Drug-Side Effect 119,382
Protein-Protein 3193
Protein-Disease 2,173,297
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pðtÞ
i ¼ apðt�1Þ

i Aþ 1� að Þpð0Þ
i ð1Þ

where pðtÞ
i is the row vector of the network node i after t steps, pð0Þ

i is
the initial one-hot encoding vector, the i-th position of the vector is
1, the rest is 0, A is the transition probability matrix after the rows
of the similar networks matrix are normalized, and a is the relative
probability of whether the restarting walk is biased towards the
local topology information or global topology information of the
network.

In order to obtain the higher-order structure information of the

network, we use the method of previously described [36] to add pðtÞ
i

in t steps in RWR:

ri ¼
XT
t¼1

pðtÞ
i ð2Þ

where T represents the total number of steps in the RWR algorithm.
Each node in a similar network can obtain a vector ri that contains
high-order structure information; therefore the ri of all nodes form
a co-occurrence probability matrix R.

After obtaining the co-occurrence probability matrix R, the Pos-
itive Pointwise Mutual Information (PPMI) [37] calculation is used
Fig. 1. A flowchart of the MEDTI method. (a) The multilayer drug and target similarity
According to the improved multilayer network representation method, the feature vecto
supervisory information. (d) Map feature vectors of drugs and targets in the drug-targe
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to obtain a high-quality vector representation of network nodes.
The PPMI is used to calculate the association probability between
nodes and contains rich network context information. The PPMI
is calculated as:

xlm ¼ max 0;
Rlm

P
l
P

mRlmP
lRlm

P
mRlm

� �
ð3Þ

where Xlm represents the probability co-present node values l andm
in a similar network.

Each layer of the similarity network between the drug and the
target can obtain the feature vectors of the drug and the target
using the above calculation, but the feature vectors obtained based
on RWR will have a significant impact because of the lack of edges
in the network and false similarities [38]. Therefore, when inte-
grating multilayer networks, high-dimensional noise needs to be
further processed to reduce the impact of noise. In this paper,
the multilayer network representation learning method based on
deep neural network proposed by MDA [32] was used; therefore,
the characteristics of noise influence can be removed by the auto-
matic encoder system [39] and the vector representation of drugs
and targets is learned in an unsupervised manner. We also
improved the MDA method to make it more suitable for predicting
drug-target interactions that integrated multiple types of data.
When integrating multilayer networks, use homogeneous net-
works for integration. The drug similarity networks are integrated
to obtain the drug feature vector, and then the target feature vector
is obtained in the same way. The integration steps were as follows:

(i) Encoding

Using the PPMI matrix XðjÞ 2 Rk�k; j 2 1; :::;Nf g of all similar net-
works calculated in the previous step, we calculated the nonlinear
representation and performed denoising:
network is constructed from the data of the drug and the target, respectively. (b)
rs of drugs and targets are learned separately. (c) Known drug-target interactions as
t space and how supervisory information is used to predict unknown DTIs.



Fig. 2. Multilayer network representation learning method overview. First, multilayer networks were converted into vectors according to the restarted random walk
algorithm (RWR) method. Then calculate the PPMI matrix of each layer network vector to get the high-quality vector. Finally, the multilayer network is combined to learn the
feature vectors of the network nodes using MDA, which is used for the subsequent prediction work.
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HðjÞ
encode ¼ r W ðjÞ

encodeX
ðjÞ þ BðjÞ

encode

� �
ð4Þ

where W ðjÞ
encode 2 Rdj�k is the weight matrix, BðjÞ

encode 2 Rdj�k is the bias
matrix, and r xð Þ ¼ 1

1þe�x is the sigmoid activation function.
Then, the characteristics of each layer of the network were con-

catenated, and the multilayer nonlinear activation function was
used to calculate the common feature representation of the inte-
grated network. The first layer was converted to:

Hc;1 ¼ r W1 Hð1Þ; :::;HðNÞ
h i

þ B1

� �
ð5Þ

where Hð1Þ; :::;HðNÞ
h i

was a concatenated activation function and the

L layer was expressed as:

Hc;lþ1 ¼ r WlHc;l þ Bl

� 	 ð6Þ
where l 2 1; :::; Lf g is the number of consecutive conversion layers.

(ii) Decoding

After obtaining the coding layer features Hc;lþ1, the decoding
operation was performed with the same number of layers as the
coding layer:

Hc;lþ1 ¼ r WlHc;l þ Bl
� 	 ð7Þ

where l 2 Lþ 1; :::;2Lf g is the number of decoding and conversion
layers. Then the decoded common feature Hc;2L was used to calculate

the decoded representation HðjÞ
decode of each layer of the network:

HðjÞ
decode ¼ r W ðjÞ

decode;1Hc;2L þ BðjÞ
decode;1

� �
ð8Þ

The decoding feature HðjÞ
decode of each layer network was used to

restore the input PPMI matrix output X̂ðjÞ; j 2 1; :::;Nf g:

X
^ ðjÞ ¼ r W ðjÞ

decode;2H
ðjÞ
decode þ BðjÞ

decode;2

� �
ð9Þ

In order to minimize the gap between the original PPMI matrix

XðjÞ and the reduction matrix X̂ðjÞ, the objective function used was:

h ¼ argmin
h

L hð Þ ¼ argmin
h

XN
j¼1

l XðjÞ;X
^ ðjÞ


 �
þ Z hð Þ ð10Þ
83
where l �ð Þ is the sample-wise binary cross-entropy function, and

Z hð Þ ¼ Z W ðjÞ
encode;B

ðjÞ
encode;W

ðjÞ
decode;B

ðjÞ
decode;Wl;Bl

n o
is the regularization

constraint of all parameters when encoding and decoding the
model.

In the model, the reverse standard propagation algorithm was
used to optimize the loss function. The model was trained using
a small batch stochastic gradient descent. After optimizing the
objective function, the final intermediate layer Hc;L þ 1 2 Rd�k was
the required compact feature vector, where d is the set vector
dimension, and k represents the number of drug or target nodes,
the feature vectors of the drug and the target were obtained
respectively.
2.6. Predicting drug-target interactions

The feature vectors of the drug and target that were learned in
the previous step were then placed into the drug target space. If
the feature vectors of the two were geometrically close in the drug
target space, there was a potential for a drug-target interaction.
The known drug-target interactions are then used as supervisory
information to predict unknown interactions. We used the method
described by Luo et al. [40] to learn the projection matrix of drugs
and proteins, and then multiplied the projected drug and target
feature vectors to obtain the drug-target interaction prediction
matrix P (See supplementary materials for projection matrix
solution).
3. Results

This study analyzed the performance of an MEDTI algorithm
designed for the efficient prediction drug-target interactions. These
experiments included two parts: (i) experiments on the data set
collected by the MEDTI algorithm using different algorithms that
included unimproved multilayer network representation learning
algorithms to compare the accuracy of the prediction results with
the advantages of the MEDTI algorithm. (ii) By comparing the
integration of different networks, the impact on the prediction
results changes, indicating that integration of multilayer networks
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can help to improve the accuracy of drug-target interactions pre-
diction models.

3.1. Performance comparison of different methods

The first task was to compare the available interaction predic-
tion algorithms. We used the DDR [14] and LRSSL [22] algorithms
for the comparison of multilayer network representation learning
methods. The MNE [41] and original MDA [32] methods were used
to obtain the feature vectors of drugs and targets, and then based
on these feature vectors, the fourth step of the MEDTI algorithm
was used to obtain the prediction results. In calculating the predic-
tion results, a 10-fold cross-validation strategy was adopted. The
area under the AUROC curve and the area under the accurate recall
curve AUPR were used to evaluate the performance of each method
[42,43]. We then verified the prediction results for the novel drug-
target interactions.

First, we compared the MEDTI algorithm with the interaction
prediction algorithm. The results in Fig. 3 showed that compared
with LRSSL, the AUROC value was 1.93% higher and the AUPR value
was 78.56% higher with MEDTI, while compared with DDR, the
AUROC value was 3.14% higher, and the AUPR value was 21.06%
higher using the MEDTI method. Because the method of network
representation learning to capture more topological information
in heterogeneous networks, the results are better than LRSSL and
DDR. Second, compared with the multilayer network embedding
learning method MNE algorithm, both the AUROC (8.74%) AUPR
(6.01%) values were higher with MEDTI, which may have been
because the MNE adopts the random walk method to embed the
multilayer network which due to the missing and false information
in each layer of the network, the random walk can lead to
Fig. 3. Comparison of AUROC and AUPR values of different prediction algorithms for d
respectively, of the different algorithms tested. The MEDTI was the algorithm proposed i
algorithm used to obtain the feature vectors of the drugs and targets. MNE is a multi
algorithms. All results were summarized over 10 trials and expressed as mean ± SD.
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increased noise when integrating a multilayer network. Thus the
quality of the feature vector is low, which affects the accuracy of
the final prediction result. Finally, due to our improvement of the
MDA method, we were also able to compare the prediction results
of the MDA algorithm with those of the MEDTI algorithm. The
AUROC value was 9.38% higher and the AUPR value was 6.54%
higher when we used the MEDTI compared with the MDA model
because the MDA algorithm uses a deep automatic encoder based
on a multilayer neural network. In the representation of multilayer
networks, as the number of layers of the neural network deepens,
the parameters that need to be trained increase exponentially. In
the case, the MEDTI algorithm is based on deep neural networks,
there were too many parameters in the model training. When opti-
mizing the objective function, it was easy to cause over-fitting of
the parameters, resulting in overt accuracy in the results of the
training data; however, the accuracy of the test data, cannot be
applied to actual data. Therefore, this paper improved on the orig-
inal MDA model to add the regularization constraint term Z hð Þ of
parameters in the objective function (10) to prevent the training
model from overfitting. The experiment showed that after adding
the regularization constraints of the parameters, the prediction
accuracy was better than the results of the original MDA model.
3.2. Performance comparison between single and differentially
integrated networks

Integrating multiple types of data helps to improve the accuracy
of predicting drug-target interactions. Therefore, we conducted
experiments to test whether the integrated network has an effect
on the accuracy of drug target interaction prediction results.
rug-target interactions. The A and B graphs compare the AUPR and AUROC values,
n this paper while MDA was the original multilayer network identification learning
layer network embedding method, and DDR and LRSSL are interaction prediction
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The MEDTI algorithm presented in this paper predicts drug-
target interactions by integrating multiple types of data. As the
Fig. 4 showed, in the result of ALL, the AUROC values were found
to be 1.88% and 3.4% higher, and the AUPR values were 1.3% and
2.46% higher, than SeStDi_PrSe and DrStDi_PrDi, respectively; the
AUROC value was 13.17% higher and the AUPR value is 10.89%
higher than DiSt_Di; the AUROC value is 15.6% higher and the
AUPR value is 13.99% higher than Di_Di. Because different types
of data describe drugs or proteins from different perspectives, after
building a multilayer network, the topology of the network has its
own characteristics. These different networks have complemen-
tary information between each other, so the more data types inte-
grated, the more accurate the prediction. In addition, when the
network has the same number of integration layers but different
types, the accuracy is also different between the results of the anal-
ysis, which is because different types of data can contribute differ-
ent information to the networks.
Fig. 4. The effect of integrating different networks for drug-target interaction predictio
algorithms, respectively. The C is the data composition of the integrated network in the e
and targets. All results were summarized over 10 trials and expressed as mean ± SD.
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3.3. Verification of prediction results

Table 3 lists 8 pairs of predicted drug target interactions.
Excluding the known drug-target interaction scores, these 8 pairs
of drug-target interaction prediction scores are the highest.
Because the MEDTI prediction model uses known drug-target
interactions as supervision information, and among the known
interactions, the number of drugs acting on protein P35348
was the largest, there were several records of target P35348 in
the prediction results. Therefore, we wanted to verify the predic-
tion results in different ways, including literature verification,
disease association verification and enrichment analysis
verification.

The drugs and targets that corresponded to DB00321 and
P14416 were Amitriptyline and the D(2) dopamine receptor
(DRD2), respectively. A study investigated the effect of psy-
chotropic drugs on the transcription of genes related to the risk
n. The A and B graphs illustrate the AUPR and AUROC values comparison between
xperiment. For example, ALL represents all similarity networks for integrating drugs



Table 3
The 8 predicted drug-target interactions in the top-50 list.

Rank DrugBank ID Drug Name UniProt ID Target Name

31 DB00321 Amitriptyline P14416 D(2) dopamine receptor
32 DB01618 Molindone P35348 Alpha-1A adrenergic receptor
38 DB00434 Cyproheptadine P35348 Alpha-1A adrenergic receptor
41 DB00589 Lisuride P35348 Alpha-1A adrenergic receptor
42 DB06216 Asenapine P35368 Alpha-1B adrenergic receptor
43 DB00186 Lorazepam P35348 Alpha-1A adrenergic receptor
46 DB05271 Rotigotine P35348 Alpha-1A adrenergic receptor
48 DB08815 Lurasidone P35348 Alpha-1A adrenergic receptor
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of Parkinson ’s disease development [44]. The effect of
psychotropic drugs on the mRNA expression of 70 genes related
to Parkinson’s disease was found to be due to the drug Amitripty-
line, which can affect and up-regulate the expression of DRD2. The
corresponding drugs and targets of DB00589 and P35348 are Lisur-
ide and Alpha-1A adrenergic receptor (ADRA1A), respectively.
Newman Tancredi et al. [45] analyzed the binding patterns of
anti-Parkinson agents and revealed a comparative pattern of affin-
ity for different classes of monoaminergic receptors. They identi-
fied the effects of some human receptors, including ADRA1A, and
found that the drug Lisuride has moderate effects on these recep-
tors. Another study [46] reported that Lisuride had both agonist
and antagonist effects on ADRA1A and suggested that its nano-
level affinity for ADRA1A may alter its efficacy as a Parkinson’s dis-
ease drug. Williams et al. [47] proposed their report that ADRA1A
is a G protein-coupled receptor (GPCR) that can regulate the con-
traction of peripheral smooth muscle and the neuronal output of
the central nervous system (CNS), making it an emerging treat-
ment of neurodegenerative diseases. The central nervous system
targeting drug, Lorazepam, is considered to be a positive allosteric
modulator (PAMs) of ADRA1A [47].

In the drug-target interaction networks, a disease association
helps to support the hypothesis that a drug may potentially affect
the predicted target. For example, Lisuride is used to treat a variety
of diseases, including dyskinesias [48], and seizures [49]. ADRA1A
is also associated with diseases, such as Liver Cirrhosis [50], and
Seizures [51]. If the diseases associated with Lisuride and ADRA1A
intersect, the two diseases are related and Lisuride may have a
potential effect on ADRA1A (Fig. 5).

Enrichment analysis using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [52] pathways can also be used to illustrate the
interaction between drugs and targets. For example, pathway
enrichment analysis of the drug Amitriptyline had a P-
value < 0.01 and indicated pathway KEGG: hsa04080, which indi-
cates a neuroactive ligand-receptor interaction and suggests, this
pathway is involved in stimulating nerve tissue (Fig. 6). By query-
Fig. 5. The disease correlation between the drug Lisuride and the ADRA1A protein. The
squares represent the diseases associated with the drug and protein independently. The
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ing the gene collection in this pathway (which includes DRD2), fur-
ther suggesting that DRD2 participates in the biological process of
Amitriptyline through their interaction.

Finally, all the 8 drug-target interactions were verified from
three aspects (literature verification, disease association, enrich-
ment analysis) and the results are shown in Table 4. We found that,
the drug-target interactions ranked 31,41,43 were the most reli-
able of the predicted results.
4. Discussion

This paper collected current data about drugs and their targets
from the public databases DrugBank, CTD, HPRD, and SIDER to
develop multilayer network representation learning and deep
learning for drug-target interaction prediction for improved pre-
diction accuracy. We used the improved MDA algorithm by adding
regularization constraint parameters to prevent the model from
overfitting and affecting the accuracy of the final prediction results.
In this paper, a ten-fold cross-validation was used to calculate the
final prediction accuracy and prediction results from other meth-
ods were compared with the same data set. The comparison of
AUROC and AUPR values showed that the accuracy of the MEDTI
framework proposed in this paper were higher than those from
other methods, which indicated that the multilayer network repre-
sentation learning method was more effective and ultimately
improved prediction accuracy. In addition, the results show that
the prediction accuracy rate of integrating multi-type data was
higher than that of single-type data; thus, it is feasible to improve
model prediction accuracy rates through the integration of multi-
type data. In the validation of the MEDTI model, three different
verification methods were used, including literature verification,
disease association verification, and the KEGG pathway enrich-
ment analysis. These results showed that the reliability of the
MEDTI predicted drug-target interactions could verified from dif-
ferent analytical processes.
blue circle represents Lisuride, the gray triangle represents ADRA1A, and the green
yellow box indicates the disease that is associated with both Lisuride and ADRA1A.



Table 4
The verification of eight predicted drug-target pairs from three aspects (literature verification, disease association, enrichment analysis).

Rank Drug Name Target Name Literature verification Disease Relationship Pathway Enrichment Analysis

31 Amitriptyline D(2) dopamine receptor
p p p

32 Molindone Alpha-1A adrenergic receptor
p p

38 Cyproheptadine Alpha-1A adrenergic receptor
p p

41 Lisuride Alpha-1A adrenergic receptor
p p p

42 Asenapine Alpha-1B adrenergic receptor
p

43 Lorazepam Alpha-1A adrenergic receptor
p p p

46 Rotigotine Alpha-1A adrenergic receptor
p p

48 Lurasidone Alpha-1A adrenergic receptor
p p

Fig. 6. KEGG hsa04080 partial enrichment pathway diagram. The figure shows part of the hsa04080 pathway in KEGG. The green is the gene on the pathway, and the black
box is the location of the gene DRD2.
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The MEDTI framework proposed here provides new insight into
the integration of multiple types of data to predict drug-target
interactions and can be used in other link prediction tasks with
good scalability. Multilayer network representation learning inte-
grates different types of data, reduces the impact of noise in the
multilayer network, and captures the deep topology of the net-
work. These can play a role in promoting link prediction tasks in
other fields.

The MEDTI model has some limitations. When integrating mul-
tiple types of data, if there is a heterogeneous network with more
than two types of nodes, the vector representation of the network
features cannot be extracted. At present, the multilayer similarity
network integrated by MEDTI is still a multilayer network with
the same node type. However, heterogeneous networks contain
richer network information and how to learn to extract feature
vectors through heterogeneous networks to fully capture more
complex network topology is still a challenge. At the same time,
the feature vectors of drugs and targets have low interpretability,
including the meaning represented by each dimension in the vec-
tor. This is a challenge that exists in current network representa-
tion learning methods and although the accuracy of the
prediction results is high, how to interpret the feature vectors
requires further study.
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